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Utility of Photonics for Power Electronics 
(PE) [1], [2]

Control logic

Power 

electronics

Sensor signal

Electrical 

sensor

Different 

modulation 

signals

Electrical connection –

susceptible to EMI

High-side 

driver

Low-side 

driver

100 102 104 106 108 1010 1012 1014 1016

Hz

Circuit
RF band Optics

EM waveControl logic

Power 

electronics

Sensor signal

Electrical 

sensor

Different 

modulation 

signals

Electrical connection –

susceptible to EMI

High-side 

driver

Low-side 

driver

100 102 104 106 108 1010 1012 1014 1016

Hz

Circuit
RF band Optics

Control logic

Power 

electronics

Sensor signal

Electrical 

sensor

Different 

modulation 

signals

Electrical connection –

susceptible to EMI

High-side 

driver

Low-side 

driver

100 102 104 106 108 1010 1012 1014 1016

Hz

Circuit
RF band Optics

EM wave

Control logic

Laser 

drivers

Fiber coupled 

laser diodes

Power 

electronics

Sensor signal

Electrical 

sensor

Different 

modulation 

signals

Optical fiber connection 

– no EMI susceptibility

100 102 104 106 108 1010 1012 1014 1016

Hz

Circuit
RF band Optics

Control logic

Laser 

drivers

Fiber coupled 

laser diodes

Power 

electronics

Sensor signal

Electrical 

sensor

Different 

modulation 

signals

Optical fiber connection 

– no EMI susceptibility

100 102 104 106 108 1010 1012 1014 1016

Hz

Circuit
RF band Optics

• Immunity from internal/external electromagnetic interference (EMI)

• Electrical isolation between power and control stages (no backpropagation)

• No need for complex floating electrical gate drivers

• Reduced device triggering delay

• Addressing issues with n&p type suitable doping for WBG/UWBG power sem. devices

• Removes requirement for high quality gate dielectrics for power sem. devices

• Dynamic modulation of device switching transition dynamics feasible with minimal 

excitation effort and selective excitation 



Some Utility (Application) of Photonic PE: 
Power Grid (HV/MV)
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Some Utility (Application) of Photonic PE: 
Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]
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Some Utility (Application) of Photonic PE: 
Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]
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Some Utility (Application) of Photonic PE: 
Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]

Traditional Power Transfer

Coded Asynchronous Multi-Scale High Frequency Power 

Transfer (Patent Protected)

Energy

Source(s)

Dc/Dc

PES

Transmission

Link

Dc/Dc or 

Dc/Ac PES

Dc or Ac

Load(s)

Energy

Source(s)

Dc/Ac

60-Hz PES

Transmission

Link

Ac/Dc or 

Ac/Ac PES

Dc or Ac

Load(s)

Energy

Source(s)

Dc/Ac

HF PES

Transmission

Link

Ac/Dc or 

Ac/Ac PES

Dc or Ac

Load(s)

Energy

Source(s)

Dc/Ac

Coded HF PES

Transmission

Link

Ac/Dc or Ac/Ac 

PES

Dc or Ac

Load(s)

(a)

(b)

(c)

(d)

or

or

or

or

Ts Ts

Ts Ts

Ts
Ts

Ts

Ts Ts

Ts Ts

Ts Ts

Ts Ts

Ts

Ts
Ts

Ts

Power packetizing
 sequence (coding)

Decoding
 sequence

Ts



Requirements of PE from (Optical)
Power Semiconductor Devices (PSDs)

❑ Low cost

❑ Low leakage

❑ Low on-state drop

❑ Low optical power

❑ Moderate to high repetition rate

❑ Wide variation in duty cycle

❑ Fast switching dynamics

❑ Reduced dv/dt and di/dt stress

❑ High reliability (electrical, mechanical, thermal stabilities)

❑ Low device complexity

❑ Low drive complexity



Mechanisms of Optical PSD: Low Rise Time [6]

• High speed device turn on

• Minimum light activation to 

actuation delay

• Relatively simple device structure

• No gate dielectric

• Triggering efficiency low

• Triggering cost could be high

• Duty cycle typically small

• Current filamentation problem
Source: 

Sandia, 

Empfasis

PCSS



Mechanisms of Optical PSD: Low Rise Time with 
Reduced Optical Power and/or Cost [7]-[9], [13], [14]
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Vertical PCSS switch capable 

of holding-off up to 50 kV

20 kV 65 MHz burst mode switching into 50 Ω

Mechanisms of Optical PSD: Low Rise Time with 
Reduced Optical Power and/or Cost [7]-[9], [13], [14]
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Mechanisms of Optical PSD: Low Rise Time with 
Reduced Optical Power and/or Cost [7]-[9], [13], [14]

Source: 

Sandia,

Texas 

Tech, UIC  

LLNL

GaN Hybrid PCSS (UIC)



Mechanisms of Optical PSD: Low Rise Time with 
Reduced Optical Power and/or Cost [7]-[9], [13], [14]

Source: 

Sandia,

Texas 

Tech, UIC  

LLNL

UWBG (Diamond) PCSS

• Higher speed device turn on

• Mid-bandgap laser reduces cost

• Enhanced device cost

• Reduced laser utilization  



Mechanisms of Optical PSD: 
Low Optical Power [6]

• Smooth turn on

• High device gain 

• Very low optical triggering power 

due to pilot thyristor

• Device real-time status available

FP: Firing pulse

IP: Indicating 

pulse

• Turn off is slow

• Gate drive is complex and lossy since 

it has to handle large turn-off current

• Integrated device structure complex

Source: 

Siemens



Mechanisms of Optical PSD: 
Low Optical Power and Faster Switching [6],[10],[11] 
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Mechanisms of Optical PSD: 
Low Optical Power and Faster Switching [6],[10],[11] 



Mechanisms of Optical PSD: 
Optical Gate Driven Insulated Gate PSD [12]

Source: 

UIC

Si MOSFET Si IGBT

SiC VJFET SiC MOSFET

• Triggering wavelength is unchanged

• Separation of power and control
• Higher onset delay

• No direct photogeneration
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Mechanism for Optical Control: 
Experimental Illustrations [12]
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Summary

1. Optically-controlled PSDs yield several device and 

system level advantages which can have direct impact on 

the reliability, efficiency, simplicity, controllability, and 

form factor of the PE based next-generation energy 

system / grid.

2. Innovative photonic MV/HV PSDs that leverage several 

superior properties of UWBG/WBG materials to yield key 

performance metrics (e.g., high gain, low leakage, low 

loss, low rise/fall times, wide duty cycle etc.) and support 

the goals of PESs outlined in “1” are a necessity.

3. A key aspect of that device-system connectivity, depends 

on how these optical UWBG/WBG PSDs are innovatively 

controlled to mitigate their impacts on the system 

environment and vice-versa and achieve multi-scale 

optimality of the next-generation PES. 
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